结对测试算法性能优化用例设计层面

在《parewise算法性能优化》一文中,

对原来算法代码进行了一些优化,

对于笛卡尔积后千条数据,是能满足使用需要的。

但在实际业务中,会碰到百万数据。

比如某接口共18个参数,每个参数均可为空,其中8个只需要单个值,10个为多选项,需要多个值。

对于多选项,我的设计是,全选+随机n个多选(1<=n<=len-1)+空。

按照这个策略,笛卡尔积的结果就是38*210=6718464。

671万数据!

parewise根本处理不动。

该怎么处理?

调整用例设计。

1、为空的情况,单独一条用例,即可以为空的,全部设置为空。parewise就不考虑为空的情况了。

38*210就变成了28*110=256,一下量级骤减。

2、视需要添加特殊的参数组合。

即使这样优化了,也会产生几十种组合。

假如接口本身响应慢,那么脚本执行的耗时就比较长。

遇到上线前回归,等待,是一件很痛苦的事。

该怎么处理?

还是回到用例设计。

在开发阶段,跑几十种组合的脚本,从时间成本来看是完全可以接受的。

在上线阶段,时间紧迫,就会显得效率有些低。

而实际上,上线前回归阶段更像是一种冒烟。

是可以适当降低覆盖度,提供效率的。

于是解决方案就是,把parewise扩展为两种模式

def parewise(dx,mode=2):
    """
    :param dx:
    :param mode: 1开发 2上线
    :return:
    """

开发模式:就完完整整返回结果

上线模式:从结果当中,随机返回1条用于快速冒烟

当然,如果是回归要测修改引入,建议还是多花点时间,老老实实跑开发模式比较好。

版权申明:本文为博主原创文章,转载请保留原文链接及作者。

相关文章

背景:计算机内部用补码表示二进制数。符号位1表示负数,0表...
大家好,我们现在来讲解关于加密方面的知识,说到加密我认为不...
相信大家在大学的《算法与数据结构》里面都学过快速排序(Qui...
加密在编程中的应用的是非常广泛的,尤其是在各种网络协议之...
前言我的目标是写一个非常详细的关于diff的干货,所以本文有...
对称加密算法 所有的对称加密都有一个共同的特点:加密和...